Building cratonic keels in Precambrian plate tectonics

Nature
  • 1.

    Arndt, N. T. et al. Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109, 61–71 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Peslier, A. H. et al. Olivine water contents in the continental lithosphere and the longevity of cratons. Nature 467, 78–81 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Lee, C. T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Eaton, D. W. & Perry, H. K. C. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci. 6, 967–970 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Griffin, W. L. et al. The evolution of lithospheric mantle beneath the Kalahari craton and its margins. Lithos 71, 215–241 (2003a).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Griffin, W. L. et al. The origin and evolution of Archaean lithospheric mantle. Precambr. Res. 127, 19–41 (2003b).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Yuan, H. & Romanowicz, B. Lithospheric layering in the North American craton. Nature 466, 1063–1068 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Herzberg, C. et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem. Geophys. Geosyst. 8, Q02006 (2007).

    ADS 

    Google Scholar
     

  • 9.

    Condie, K. C. & Kroner, A. When did plate tectonics begin? Evidence from the geologic record. In When Did Plate Tectonics Begin On Planet Earth? (eds Condie, K. C. & Pease, V.) 440, 281–294 (Geological Society of America, 2008).

  • 10.

    Korenaga, J. Initiation and evolution of plate tectonics on Earth: theories and observations. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Gerya, T. V. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Dhuime, B., Wuestefeld, A. & Hawkesworth, C. J. Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Griffin, W. L. et al. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Griffin, W. L., O’Reilly, S. Y. & Ryan, C. G. The composition and origin of subcontinental lithospheric mantle. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to Francis(eds Fei, Y. et al.) 6, 13–45 (The Geochemical Society, 1999).

  • 15.

    Artemieva, I. M. & Mooney, W. D. Thermal thickness and evolution of Precambrian lithosphere: a global study. J. Geophys. Res. 106, 16387–16414 (2001).

    ADS 

    Google Scholar
     

  • 16.

    Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Stein, M. & Hofmann, A. W. Mantle plumes and episodic crustal growth. Nature 372, 63–68 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Davies, G. F. Punctuated tectonic evolution of the Earth. Earth Planet. Sci. Lett. 136, 363–379 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Griffin, W. L. & O’Reilly, S. Y. Cratonic lithospheric mantle: is anything subducted? Episodes 30, 43–53 (2007).


    Google Scholar
     

  • 20.

    Helmstaedt, H. H. & Schulze, D. J. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. Geol. Soc. Aust. Spec. Publ 14, 358–368 (1989).


    Google Scholar
     

  • 21.

    Beall, A. P., Moresi, L. & Cooper, C. M. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology 46, 487–490 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Perchuk, A. L. et al. Hotter mantle but colder subduction in the Precambrian: what are the implications? Precambr. Res. 330, 20–34 (2019).

    CAS 

    Google Scholar
     

  • 23.

    Sizova, E. et al. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Sizova, E. et al. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambr. Res. 271, 198–224 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    van Hunen, J. & van den Berg, A. P. Plate tectonics on the early Earth limitations imposed by strength and buoyancy of subducted lithosphere. Lithos 103, 217–235 (2008).

    ADS 

    Google Scholar
     

  • 26.

    Richard, G., Bercovici, D. & Karato, S.-I. Slab dehydration in the Earth’s mantle transition zone. Earth Planet. Sci. Lett. 251, 156–167 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Richard, G. C. & Bercovici, D. Water-induced convection in the Earth’s mantle transition zone. J. Geophys. Res. 114, B01205 (2009).

    ADS 

    Google Scholar
     

  • 28.

    O’Reilly, S. Y. & Griffin, W. L. Imaging chemical and thermal heterogeneity in the subcontinental lithospheric mantle with garnets and xenoliths: geophysical implications. Tectonophysics 416, 289–309 (2006).

    ADS 

    Google Scholar
     

  • 29.

    Kobussen, A. F. et al. Ghosts of lithospheres past: imaging an evolving lithospheric mantle in southern Africa. Geology 36, 515–518 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Kobussen, A. F., Griffin, W. L. & O’reilly, S. Y. Cretaceous thermochemical modification of the Kaapvaal cratonic lithosphere, South Africa. Lithos 112, 886–895 (2009).

    ADS 

    Google Scholar
     

  • 31.

    Rychert, C. A. & Shearer, P. M. A global view of the lithosphere–asthenosphere boundary. Science 324, 495–498 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Selway, K., Ford, H. & Kelemen, P. The seismic mid-lithosphere discontinuity. Earth Planet. Sci. Lett. 414, 45–57 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Coltice, N. et al. What drives tectonic plates? Sci. Adv. 5, eaax4295 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. Lond. 165, 895–914 (2008).


    Google Scholar
     

  • 36.

    O’Reilly, S. Y. et al. Taking the pulse of the Earth: linking crustal and mantle events. Aust. J. Earth Sci. 55, 983–995 (2008).

    ADS 

    Google Scholar
     

  • 37.

    Griffin, W. L. & O’Reilly, S. Y. The earliest subcontinental mantle. In Earth’s Oldest Rocks (eds Van Kranendonk, M. et al.) 81–102 (Elsevier, 2018).

  • 38.

    Gerya, T. V. et al. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Wang, H., van Hunen, J. & Pearson, G. Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model. Tectonophysics 746, 562–571 (2018).

    ADS 

    Google Scholar
     

  • 40.

    Gerya, T. V. & Yuen, D. A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties. Phys. Earth Planet. Inter. 140, 293–318 (2003).

    ADS 

    Google Scholar
     

  • 41.

    Labrosse, S. & Jaupart, C. Thermal evolution of the Earth: secular changes and fluctuations of plate characteristics. Earth Planet. Sci. Lett. 260, 465–481 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Herzberg, C. et al. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Foley, S., Tiepolo, M. & Vannucci, R. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–840 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Ranalli, G. Rheology of the Earth (Chapman & Hall, 1995).

  • 46.

    Rudnick, R. L. Making continental crust. Nature 378, 571–578 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Katz, R. F., Spiegelman, M. & Langmuir, C. H. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, 1073 (2003).

    ADS 

    Google Scholar
     

  • 48.

    Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  • 49.

    Chapman, D. Thermal gradients in the continental crust. In The Nature of the Lower Continental Crust (eds Dawson, J. et al.) 24, 63–70 (Geological Society of London, 1986).

  • 50.

    Wedepohl, K. H. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Baitsch-Ghirardello, B., Gerya, T. V. & Burg, J.-P. Geodynamic regimes of intra-oceanic subduction: implications forearc extension vs. shortening processes. Gondwana Res. 25, 546–560 (2014).

    ADS 

    Google Scholar
     

  • 52.

    Crameri, F. et al. A comparison of numerical surface topography calculations in geodynamic modelling: an evaluation of the ‘sticky air’ method. Geophys. J. Int. 189, 38–54 (2012).

    ADS 

    Google Scholar
     

  • 53.

    Gerya, T. V. & Yuen, D. A. Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Katsura, T. & Ito, E. The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res. 94, 663–670 (1989).


    Google Scholar
     

  • 55.

    Ito, E. et al. Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry. Science 249, 1275–1278 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Ito, K. & Kennedy, G. C. in The Structure and Physical Properties of the Earth’s Crust (ed. Heacock, J. G.) Geophysical Monograph Series 14, 303–314 (AGU, 1971).

  • 57.

    Bittner, D. & Schmeling, H. Numerical modeling of melting processes and induced diapirism in the lower crust. Geophys. J. Int. 123, 59–70 (1995).

    ADS 

    Google Scholar
     

  • 58.

    Clauser, C. & Huenges, E. Thermal conductivity of rocks and minerals. In Rock Physics and Phase Relations: A Handbook of Physical Constants (ed. Ahrens, T. J.) 105–126 (AGU, 1995).

  • 59.

    Schmidt, M. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Gerya, T. V. et al. Seismic implications of mantle wedge plumes. Phys. Earth Planet. Inter. 156, 59–74 (2006).

    ADS 

    Google Scholar
     

  • 62.

    Vogt, K., Gerya, T. V. & Castro, A. Crustal growth at active continental margins: Numerical modelling. Phys. Earth Planet. Inter. 192/193, 1–20 (2012).

    ADS 

    Google Scholar
     

  • 63.

    Elliott, T. et al. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 64.

    Hawkesworth, C. Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem. Geol. 139, 207–221 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Rozel, A. B. et al. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Djomani, Y. H. P. et al. The density structure of subcontinental lithosphere through time. Earth Planet. Sci. Lett. 184, 605–621 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 67.

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    ADS 

    Google Scholar
     

  • 68.

    Burg, J.-P. & Gerya, T. V. The role of viscous heating in Barrovian metamorphism of collisional orogens: thermomechanical models and application to the Lepontine Dome in the Central Alps. J. Metamorph. Geol. 23, 75–95 (2005).

    ADS 

    Google Scholar
     

  • 69.

    Mei, S. & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res. 105 (B9), 21471–21481 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Gerya, T. V. & Meilick, F. I. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol. 29, 7–31 (2011).

    ADS 

    Google Scholar
     

  • 71.

    Griffin, W. L. et al. Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics 262, 19–33 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Griffin, W. L. et al. Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J. Petrol. 40, 705–727 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 73.

    Griffin, W. L. et al. The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton. Tectonophysics 310, 1–35 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Griffin, W. L. et al. In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochem. Geophys. Geosyst. 3, 1069 (2002).

    ADS 

    Google Scholar
     

  • 75.

    Griffin, W. L. et al. Lithosphere mapping beneath the North American Plate. Lithos 77, 873–922 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 76.

    Griffin, W. L. et al. The Kharamai kimberlite field, Siberia: modification of the lithospheric mantle by the Siberian Trap event. Lithos 81, 167–187 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Griffin, W. L. et al. Archean lithospheric mantle beneath Arkansas: continental growth by microcontinent accretion. Bull. Geol. Soc. Am. 123, 1763–1775 (2011).


    Google Scholar
     

  • 78.

    Aulbach, S. et al. Mantle formation and evolution, Slave craton: constraints from HSE abundances and Re-Os systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 208, 61–88 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 79.

    Westerlund, K. J. et al. Re–Os isotope systematics of peridotitic diamond inclusion sulfides from the Panda kimberlite, Slave craton. In Abstr. 8th Intl. Kimberlite Conf. https://ikcabstracts.com/index.php/ikc/issue/view/21 (2003).

  • 80.

    Davies, R. et al. Diamonds from the deep: pipe DO-27, Slave craton, Canada. In Proc. 7th Int. Kimberlite Conf., 148–155 (Red Roof Design, 1999).

  • 81.

    Aulbach, S. et al. Lithosphere formation in the central Slave craton (Canada): plume subcretion or lithosphere accretion? Contrib. Mineral. Petrol. 154, 409–427 (2007).

    CAS 

    Google Scholar
     

  • 82.

    Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 149, 16–30 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    van der Meer, Q. H. A. et al. The provenance of subcratonic mantle beneath the Limpopo mobile belt (South Africa). Lithos 170-171, 90–104 (2013).

    ADS 

    Google Scholar
     

  • 84.

    Gaul, O. F., O’Reilly, S. Y. & Griffin, W. L. Lithosphere structure and evolution in southeastern Australia. Geol. Soc. Aust. Spec. Publ 22, 179–196 (2003).


    Google Scholar
     

  • 85.

    Scott Smith, B. et al. Kimberlites near Orroroo, South Australia. In Kimberlites: I: Kimberlites And Related Rocks (ed. Kornprobst, J.) 11, 121–142 (Elsevier, 1984).

  • 86.

    Griffin, W. L. et al. Ni in Cr-pyrope garnets: a new geothermometer. Contrib. Mineral. Petrol. 103, 199–202 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Griffin, W. L. et al. Statistical techniques for the classification of chromites in diamond exploration samples. J. Geochem. Explor. 59, 233–249 (1997).

    CAS 

    Google Scholar
     

  • 88.

    Ryan, C. G., Griffin, W. L. & Pearson, N. J. Garnet geotherms: a technique for derivation of P-T data from Cr-pyrope garnets. J. Geophys. Res. 101, 5611–5625 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    Gaul, O. F. et al. Mapping olivine composition in the lithospheric mantle. Earth Planet. Sci. Lett. 182, 223–235 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 90.

    Begg, G. C. et al. The lithospheric architecture of Africa: seismic tomography, mantle petrology and tectonic evolution. Geosphere 5, 23–50 (2009).

    ADS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    Elon Musk’s SpaceX Gets an HBO Series, From Channing Tatum and Star Trek Beyond Writer: Report
    How LGBT+ scientists would like to be included and welcomed in STEM workplaces
    Orbital Sidekick wins $16 million U.S. Air Force contract
    Georgina Mace (1953–2020)
    Op-ed | Commitment to space exploration should be on the ballot

    Leave a Reply

    Your email address will not be published. Required fields are marked *