Graphene-based Josephson junction microwave bolometer

Nature
  • 1.

    Benford, D., Amato, M., Mather, J. C., Moseley, S. H. & Leisawitz, D. Mission concept for the Single Aperture Far-Infrared (SAFIR) Observatory. Astrophys. Space Sci. 294, 177–212 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 65, 485–514 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Govia, L. C. G. et al. High-fidelity qubit measurement with a microwave-photon counter. Phys. Rev. A 90, 062307 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Gasparinetti, S. et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions. Phys. Rev. Lett. 117, 030802 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J. & Lee, H.-J. Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction. Phys. Rev. Lett. 107, 146605 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Coskun, U. C. et al. Distribution of supercurrent switching in graphene under the proximity effect. Phys. Rev. Lett. 108, 097003 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Borzenets, I., Coskun, U. C., Jones, S. J. & Finkelstein, G. Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures. Phys. Rev. Lett. 111, 027001 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article 

    Google Scholar
     

  • 13.

    Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Moseley, S. H., Mather, J. C. & McCammon, D. Thermal detectors as X-ray spectrometers. J. Appl. Phys. 56, 1257–1262 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Fong, K. C. & Schwab, K. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).


    Google Scholar
     

  • 17.

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    McKitterick, C., Prober, D. & Karasik, B. Performance of graphene thermal photon detectors. J. Appl. Phys. 113, 044512 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    Article 

    Google Scholar
     

  • 21.

    Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9, 814–819 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    El Fatimy, A. E. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335–338 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Viljas, J. K. & Heikkila, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Chen, W. & Clerk, A. Electron-phonon mediated heat flow in disordered graphene. Phys. Rev. B 86, 125443 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & Mceuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Tirelli, S. et al. Manipulation and generation of supercurrent in out-of-equilibrium Josephson tunnel nanojunctions. Phys. Rev. Lett. 101, 077004 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Morpurgo, A. F., Klapwijk, T. M. & van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 72, 966–968 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Oelsner, G. et al. Detection of weak microwave fields with an underdamped Josephson junction. Phys. Rev. Appl. 7, 014012 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Draelos, A. W. et al. Supercurrent flow in multiterminal graphene Josephson junctions. Nano Lett. 19, 1039–1043 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Science 358, 1303–1306 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Fulton, T. A. & Dunkelberger, L. N. Lifetime of zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760–4768 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111, 054510 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Kong, J. F., Levitov, L., Halbertal, D. & Zeldov, E. Resonant electron-lattice cooling in graphene. Phys. Rev. B 97, 245416 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    What fuelled an ancient empire’s rise? Potatoes and quinoa
    How bad is Omicron? What scientists know so far
    This 3D Printer Can Print Live Blobs Using Bioink Made From Bacterial Cells
    Space Council condemns “irresponsible” Russian ASAT test
    Nissan unveils electric lunar rover prototype with ‘e-4ORCE’ all-wheel control present on upcoming Ariya

    Leave a Reply

    Your email address will not be published. Required fields are marked *