Lessons from the host defences of bats, a unique viral reservoir

Nature
  • 1.

    WHO. COVID-19 Status Report https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed 21 December 2020).

  • 2.

    Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). This key virology paper details the isolation and characterization of the SARS-CoV-2 virus responsible for the current outbreak of COVID-19 and a closely related bat CoV.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V. & Schountz, T. Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 531–545 (2006). The first comprehensive review on bats as a unique reservoir source of emerging viruses, which provides a summary that remains highly cited and relevant to this day.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Smith, I. & Wang, L. F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 3, 84–91 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Wang, L. F. & Anderson, D. E. Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 34, 79–89 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Enright, J. B., Sadler, W. W., Moulton, J. E. & Constantine, D. Isolation of rabies virus from an insectivorous bat (Tadarida mexicana) in California. Proc. Soc. Exp. Biol. Med. 89, 94–96 (1955).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 1084–1089 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A Taxonomic and Geographic Database https://batnames.org/ (accessed 12 August 2020).

  • 11.

    Upham, N. et al. Mammal Diversity Database version 1.2 https://doi.org/10.5281/zenodo.4139818 (2020).

  • 12.

    Nowak, R. M. & Walker, E. P. Walker’s Bats of the World (Johns Hopkins Univ. Press, 1994).

  • 13.

    Jones, K. E. (ed.) in Encyclopedia of Life Sciences  https://doi.org/10.1038/npg.els.0004129 (Wiley, 2006).

  • 14.

    Voigt, C. C. & Kingston, T. Bats in the Anthropocene (Springer International, 2015).

  • 15.

    Kunz, T. H. Ecology of Bats (Springer US, 1982).

  • 16.

    Geiser, F. & Stawski, C. Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integr. Comp. Biol. 51, 337–348 (2011).


    Google Scholar
     

  • 17.

    Jones, G. & Holderied, M. W. Bat echolocation calls: adaptation and convergent evolution. Proc. R. Soc. Lond. B 274, 905–912 (2007).


    Google Scholar
     

  • 18.

    Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J. & de Jong, W. W. Integrated fossil and molecular data reconstruct bat echolocation. Proc. Natl Acad. Sci. USA 98, 6241–6246 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Wang, Y., Pan, Y., Parsons, S., Walker, M. & Zhang, S. Bats respond to polarity of a magnetic field. Proc. R. Soc. Lond. B 274, 2901–2905 (2007).


    Google Scholar
     

  • 20.

    Alexander, R. M. The merits and implications of travel by swimming, flight and running for animals of different sizes. Integr. Comp. Biol. 42, 1060–1064 (2002).


    Google Scholar
     

  • 21.

    Thomas, S. P. Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. J. Exp. Biol. 63, 273–293 (1975).

    CAS 

    Google Scholar
     

  • 22.

    Voigt, C. C. & Speakman, J. R. Nectar-feeding bats fuel their high metabolism directly with exogenous carbohydrates. Funct. Ecol. 21, 913–921 (2007).


    Google Scholar
     

  • 23.

    Kelm, D. H., Simon, R., Kuhlow, D., Voigt, C. C. & Ristow, M. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats. Proc. R. Soc. Lond. B 278, 3490–3496 (2011).

    CAS 

    Google Scholar
     

  • 24.

    O’Mara, M. T. et al. Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. eLife 6, e26686 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Muijres, F. T. et al. Leading-edge vortex improves lift in slow-flying bats. Science 319, 1250–1253 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Austad, S. N. & Fischer, K. E. Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. 46, B47–B53 (1991).

    CAS 

    Google Scholar
     

  • 27.

    Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D. & Austad, S. N. A new field record for bat longevity. J. Gerontol. A 60, 1366–1368 (2005).


    Google Scholar
     

  • 28.

    Austad, S. N. Methusaleh’s Zoo: how nature provides us with clues for extending human health span. J. Comp. Pathol. 142, S10–S21 (2010).


    Google Scholar
     

  • 29.

    Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).

    CAS 

    Google Scholar
     

  • 30.

    Metchnikoff, E., Weinberg, M., Pozerski, E., Distaso, A. & Berthelot, A. Rousettes et microbes. Ann. Inst. Pasteur (Paris) 23, 61 (1909).


    Google Scholar
     

  • 31.

    ICTV. Virus Taxonomy https://talk.ictvonline.org/taxonomy (accessed 21 May 2020).

  • 32.

    Lau, S. K. et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA 102, 14040–14045 (2005). A highly cited paper in the field that revealed bats as the natural reservoir of SARS-related coronaviruses, which opened up an era of research into bats and coronaviruses.

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).The product of ten years of intensive research, this study confirmed the presence of SARS-CoV in bats and their potential to infect humans, which is of contemporary relevance for the current pursuit of the origins of SARS-CoV-2.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Poon, L. L. et al. Identification of a novel coronavirus in bats. J. Virol. 79, 2001–2009 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Banerjee, A., Kulcsar, K., Misra, V., Frieman, M. & Mossman, K. Bats and coronaviruses. Viruses 11, 41 (2019).


    Google Scholar
     

  • 37.

    Woo, P. C. Y., Lau, S. K. P., Li, K. S. M., Tsang, A. K. L. & Yuen, K. Y. Genetic relatedness of the novel human group C betacoronavirus to Tylonycteris bat coronavirus HKU4 and Pipistrellus bat coronavirus HKU5. Emerg. Microbes Infect. 1, e35 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Cui, J., Li, F. & Shi, Z. L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).

    CAS 

    Google Scholar
     

  • 39.

    Fan, Y., Zhao, K., Shi, Z. L. & Zhou, P. Bat coronaviruses in China. Viruses 11, 210 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e3 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Cheng, V. C., Lau, S. K., Woo, P. C. & Yuen, K. Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20, 660–694 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Cima, G. Pandemic prevention program ending after 10 years. JAVMAnews https://www.avma.org/javma-news/2020-01-15/pandemic-prevention-program-ending-after-10-years (2 January 2020).

  • 45.

    Wadman, M. & Cohen, J. NIH’s axing of bat coronavirus grant a ‘horrible precedent’ and might break rules, critics say. Science https://doi.org/10.1126/science.abc5616 (30 April 2020).

  • 46.

    Murray, K. et al. A morbillivirus that caused fatal disease in horses and humans. Science 268, 94–97 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Chua, K. B. et al. Nipah virus: a recently emergent deadly paramyxovirus. Science 288, 1432–1435 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Huang, Y. W. et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4, e00737-13 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. EuroSurveill. 25, 2001005 (2020).


    Google Scholar
     

  • 51.

    Abdel-Moneim, A. S. & Abdelwhab, E. M. Evidence for SARS-CoV-2 infection of animal hosts. Pathogens 9, 529 (2020).

    CAS 

    Google Scholar
     

  • 52.

    Sit, T. H. C. et al. Infection of dogs with SARS-CoV-2. Nature 586, 776–778 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Newman, A. et al. First reported cases of SARS-CoV-2 infection in companion animals – New York, March–April 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 710–713 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Gillespie, T. R. & Leendertz, F. H. COVID-19: protect great apes during human pandemics. Nature 579, 497 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLoS Pathog. 16, e1008758 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Xiao, Y. et al. Pathological changes in masked palm civets experimentally infected by severe acute respiratory syndrome (SARS) coronavirus. J. Comp. Pathol. 138, 171–179 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Lam, T. T. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Cogswell-Hawkinson, A. et al. Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J. Virol. 86, 5791–5799 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Freuling, C. et al. Experimental infection of serotine bats (Eptesicus serotinus) with European bat lyssavirus type 1a. J. Gen. Virol. 90, 2493–2502 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, e1002304 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Frick, W. F., Puechmaille, S. J. & Willis, C. K. R. in Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. & Kingston, T.) 245–262 (Springer, 2015).

  • 63.

    Luis, A. D. et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc. R. Soc. Lond. B 280, 20122753 (2013).


    Google Scholar
     

  • 64.

    Brook, C. E. & Dobson, A. P. Bats as ‘special’ reservoirs for emerging zoonotic pathogens. Trends Microbiol. 23, 172–180 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017). A landmark study that used host traits (such as environmental factors, host taxonomy and human presence within the range of a host species) to demonstrate that—out of all mammalian orders—bats contain the largest proportion of zoonotic viruses.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Wang, L.-F., Walker, P. J. & Poon, L. L. Mass extinctions, biodiversity and mitochondrial function: are bats ‘special’ as reservoirs for emerging viruses? Curr. Opin. Virol. 1, 649–657 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Plowright, R. K. et al. Ecological dynamics of emerging bat virus spillover. Proc. R. Soc. Lond. B 282, 20142124 (2015). A comprehensive review that discusses a variety of ecological drivers of zoonotic spillover and potential risk factors.


    Google Scholar
     

  • 68.

    Han, H. J. et al. Bats as reservoirs of severe emerging infectious diseases. Virus Res. 205, 1–6 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Bouma, H. R., Carey, H. V. & Kroese, F. G. Hibernation: the immune system at rest? J. Leukoc. Biol. 88, 619–624 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    O’Shea, T. J. et al. Bat flight and zoonotic viruses. Emerg. Infect. Dis. 20, 741–745 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Miller, M. R. et al. Broad and temperature independent replication potential of filoviruses on cells derived from Old and New World bat species. J. Infect. Dis. 214, S297–S302 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Ahn, M. et al. Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 4, 789–799 (2019). A functional study that demonstrates lowered activation of the NLRP3 inflammasome sensor in bats with a reduced response to both ‘sterile’ and zoonotic viral infection, mechanistically identifying dampened transcriptional priming, a novel splice variant and functional activity of bat NLRP3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Pavlovich, S. S. et al. The Egyptian rousette genome reveals unexpected features of bat antiviral immunity. Cell 173, 1098–1110 (2018).An important bat genomics paper that reveals potential mechanisms of host tolerance.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Hayman, D. T. S. Bat tolerance to viral infections. Nat. Microbiol. 4, 728–729 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 75.

    Cameron, M. J., Bermejo-Martin, J. F., Danesh, A., Muller, M. P. & Kelvin, D. J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res. 133, 13–19 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Liu, X. et al. Transcriptomic signatures differentiate survival from fatal outcomes in humans infected with Ebola virus. Genome Biol. 18, 4 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Totura, A. L. & Baric, R. S. SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon. Curr. Opin. Virol. 2, 264–275 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 78.

    Zampieri, C. A., Sullivan, N. J. & Nabel, G. J. Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat. Immunol. 8, 1159–1164 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Swanepoel, R. et al. Experimental inoculation of plants and animals with Ebola virus. Emerg. Infect. Dis. 2, 321–325 (1996).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Munster, V. J. et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci. Rep. 6, 21878 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Middleton, D. J. et al. Experimental Nipah virus infection in pteropid bats (Pteropus poliocephalus). J. Comp. Pathol. 136, 266–272 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 83.

    Zhang, G. et al. Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460 (2013). The first comparative bat genomics study, which revealed various highly selected, missing or altered genes that have diverse roles in the mammalian DNA damage, innate immune and oxidative phosphorylation pathways and opened up various avenues for further discoveries in bats.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Glennon, N. B., Jabado, O., Lo, M. K. & Shaw, M. L. Transcriptome profiling of the virus-induced innate immune response in Pteropus vampyrus and its attenuation by Nipah virus interferon antagonist functions. J. Virol. 89, 7550–7566 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Wynne, J. W. et al. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol. 15, 532 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Papenfuss, A. T. et al. The immune gene repertoire of an important viral reservoir, the Australian black flying fox. BMC Genomics 13, 261 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Xie, J. et al. Dampened STING-dependent interferon activation in bats. Cell Host Microbe 23, 297–301 (2018). An important experimental study that showed reduced signalling by the intracellular sensor, STING, of bats, owing to a replacement—across all bat species—of a serine residue (S358) that is highly conserved in other mammals; this replacement results in the loss of interferon production and antiviral activity.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    De La Cruz-Rivera, P. C. et al. The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. J. Immunol. 200, 209–217 (2018).


    Google Scholar
     

  • 89.

    Zhou, P. et al. Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl Acad. Sci. USA 113, 2696–2701 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Zhang, Q. et al. IFNAR2-dependent gene expression profile induced by IFN-α in Pteropus alecto bat cells and impact of IFNAR2 knockout on virus infection. PLoS ONE 12, e0182866 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    McNab, F., Mayer-Barber, K., Sher, A., Wack, A. & O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 15, 87–103 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biol. 15, e2004086 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Hölzer, M. et al. Virus- and interferon alpha-induced transcriptomes of cells from the microbat Myotis daubentonii. iScience 19, 647–661 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Zhou, P. et al. IRF7 in the Australian black flying fox, Pteropus alecto: evidence for a unique expression pattern and functional conservation. PLoS ONE 9, e103875 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Banerjee, A. et al. Positive selection of a serine residue in bat IRF3 confers enhanced antiviral protection. iScience 23, 100958 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Fuchs, J. et al. Evolution and antiviral specificities of interferon-induced Mx proteins of bats against Ebola, influenza, and other RNA viruses. J. Virol. 91, e00361-17 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Hayward, J. A. et al. Differential evolution of antiretroviral restriction factors in pteropid bats as revealed by APOBEC3 gene complexity. Mol. Biol. Evol. 35, 1626–1637 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Banerjee, A. et al. Novel insights into immune systems of bats. Front. Immunol. 11, 26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Subudhi, S., Rapin, N. & Misra, V. Immune system modulation and viral persistence in bats: understanding viral spillover. Viruses 11, 192 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Secombes, C. J. & Zou, J. Evolution of interferons and interferon receptors. Front. Immunol. 8, 209 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Malireddi, R. K. & Kanneganti, T. D. Role of type I interferons in inflammasome activation, cell death, and disease during microbial infection. Front. Cell. Infect. Microbiol. 3, 77 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374 (2020).

    CAS 

    Google Scholar
     

  • 104.

    Laing, E. D. et al. Enhanced autophagy contributes to reduced viral infection in black flying fox cells. Viruses 11, 260 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Kuballa, P., Nolte, W. M., Castoreno, A. B. & Xavier, R. J. Autophagy and the immune system. Annu. Rev. Immunol. 30, 611–646 (2012).

    CAS 

    Google Scholar
     

  • 106.

    Phillips, A. M. et al. Host proteostasis modulates influenza evolution. eLife 6, e28652 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 107.

    Reyes-del Valle, J., Chávez-Salinas, S., Medina, F. & Del Angel, R. M. Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J. Virol. 79, 4557–4567 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol. 2, 185–194 (2002).

    CAS 

    Google Scholar
     

  • 109.

    Beere, H. M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475 (2000).

    CAS 

    Google Scholar
     

  • 110.

    Singh, R. et al. Heat-shock protein 70 genes and human longevity: a view from Denmark. Ann. NY Acad. Sci. 1067, 301–308 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Shen, Y. Y. et al. Adaptive evolution of energy metabolism genes and the origin of flight in bats. Proc. Natl Acad. Sci. USA 107, 8666–8671 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Koh, J. et al. ABCB1 protects bat cells from DNA damage induced by genotoxic compounds. Nat. Commun. 10, 2820 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 113.

    Brunet-Rossinni, A. K. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech. Ageing Dev. 125, 11–20 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Ungvari, Z. et al. Oxidative stress in vascular senescence: lessons from successfully aging species. Front. Biosci. 13, 5056–5070 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Vyssokikh, M. Y. et al. Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program. Proc. Natl Acad. Sci. USA 117, 6491–6501 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Chattopadhyay, B., Garg, K. M., Ray, R., Mendenhall, I. H. & Rheindt, F. E. Novel de novo genome of Cynopterus brachyotis reveals evolutionarily abrupt shifts in gene family composition across fruit bats. Genome Biol. Evol. 12, 259–272 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 117.

    Hawkins, J. A. et al. A metaanalysis of bat phylogenetics and positive selection based on genomes and transcriptomes from 18 species. Proc. Natl Acad. Sci. USA 116, 11351–11360 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Iwasaki, A. A virological view of innate immune recognition. Annu. Rev. Microbiol. 66, 177–196 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Li, N. et al. Influenza infection induces host DNA damage and dynamic DNA damage responses during tissue regeneration. Cell. Mol. Life Sci. 72, 2973–2988 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Lupfer, C., Malik, A. & Kanneganti, T. D. Inflammasome control of viral infection. Curr. Opin. Virol. 12, 38–46 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Chen, I. Y., Moriyama, M., Chang, M. F. & Ichinohe, T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front. Microbiol. 10, 50 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Nieto-Torres, J. L. et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485, 330–339 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Yaqinuddin, A. & Kashir, J. Novel therapeutic targets for SARS-CoV-2-induced acute lung injury: targeting a potential IL-1β/neutrophil extracellular traps feedback loop. Med. Hypotheses 143, 109906 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Freeman, T. L. & Swartz, T. H. Targeting the NLRP3 inflammasome in severe COVID-19. Front. Immunol. 11, 1518 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    Ahn, M., Cui, J., Irving, A. T. & Wang, L. F. Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci. Rep. 6, 21722 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Schattgen, S. A. & Fitzgerald, K. A. The PYHIN protein family as mediators of host defenses. Immunol. Rev. 243, 109–118 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014). A key review paper in the field of inflammasome biology.

    CAS 
    PubMed 

    Google Scholar
     

  • 130.

    Wang, K. et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180, 941–955 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Goh, G. et al. Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc. Natl Acad. Sci. USA 117, 28939–28949 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 132.

    Banerjee, A., Rapin, N., Bollinger, T. & Misra, V. Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci. Rep. 7, 2232 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Yong, K. S. M. et al. Bat–mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Sci. Rep. 8, 4726 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Escalera-Zamudio, M. et al. The evolution of bat nucleic acid-sensing Toll-like receptors. Mol. Ecol. 24, 5899–5909 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 135.

    Mozzi, A. et al. OASes and STING: adaptive evolution in concert. Genome Biol. Evol. 7, 1016–1032 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Lu, D. et al. Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. PLoS Biol. 17, e3000436 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Wynne, J. W. et al. Characterization of the antigen processing machinery and endogenous peptide presentation of a bat MHC class I molecule. J. Immunol. 196, 4468–4476 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Ng, J. H. et al. Evolution and comparative analysis of the bat MHC-I region. Sci. Rep. 6, 21256 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Qu, Z. et al. Structure and peptidome of the bat MHC class I molecule reveal a novel mechanism leading to high-affinity peptide binding. J. Immunol. 202, 3493–3506 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 140.

    Salmier, A., de Thoisy, B., Crouau-Roy, B., Lacoste, V. & Lavergne, A. Spatial pattern of genetic diversity and selection in the MHC class II DRB of three Neotropical bat species. BMC Evol. Biol. 16, 229 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Ng, J. H. J., Tachedjian, M., Wang, L. F. & Baker, M. L. Insights into the ancestral organisation of the mammalian MHC class II region from the genome of the pteropid bat, Pteropus alecto. BMC Genomics 18, 388 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Brook, C. E. et al. Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. eLife 9, e48401 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 144.

    Gamage, A. M. et al. Immunophenotyping monocytes, macrophages and granulocytes in the pteropodid bat Eonycteris spelaea. Sci. Rep. 10, 309 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Edenborough, K. M. et al. Dendritic cells generated from Mops condylurus, a likely filovirus reservoir host, are susceptible to and activated by Zaire ebolavirus infection. Front. Immunol. 10, 2414 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 146.

    Zhou, P. et al. Unlocking bat immunology: establishment of Pteropus alecto bone marrow-derived dendritic cells and macrophages. Sci. Rep. 6, 38597 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 147.

    Jebb, D. et al. Six reference-quality genomes reveal evolution of bat adaptations. Nature 583, 578–584 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Gibbs, E. P. J. The evolution of One Health: a decade of progress and challenges for the future. Vet. Rec. 174, 85–91 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 149.

    Teeling, E. C. et al. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307, 580–584 (2005). A comprehensive time-scale analysis of the molecular phylogeny of all extant bats that validated the Yinpterochiroptera and Yangochiroptera suborders, predicted the common ancestor of bats and suggests that their evolutionary origins were in Laurasia (possibly North America).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    McCracken, G. F. in Monitoring Trends in Bat populations of the US and Territories: Problems and Prospects. United States Geological Survey, Biological Resources Discipline, Information and Technology Report, USGS/BRD/ITR-2003–003 (eds O’Shea, T. J. & Bogan, M. A.) 21–30 (US Geological Survey, 2003).

  • 151.

    Norris, D. O. & Lopez, K. H. Hormones and Reproduction of Vertebrates Vol. 1 (Academic, 2010).

  • 152.

    Burbank, R. C. & Young, J. Z. Temperature changes and winter sleep of bats. J. Physiol. (Lond.) 82, 459–467 (1934).

    CAS 

    Google Scholar
     

  • 153.

    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury, 2016).

  • 154.

    Reeder, W. G. & Cowles, R. B. Aspects of thermoregulation in bats. J. Mamm. 32, 389–403 (1951).


    Google Scholar
     

  • 155.

    Davis, W. H. & Reite, O. B. Responses of bats from temperate regions to changes in ambient temperature. Biol. Bull. 132, 320–328 (1967).

    CAS 

    Google Scholar
     

  • 156.

    Ossa, G., Kramer-Schadt, S., Peel, A. J., Scharf, A. K. & Voigt, C. C. The movement ecology of the straw-colored fruit bat, Eidolon helvum, in sub-Saharan Africa assessed by stable isotope ratios. PLoS ONE 7, e45729 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Morrison, P. & McNab, B. K. Temperature regulation in some Brazilian phyllostomid bats. Comp. Biochem. Physiol. 21, 207–221 (1967).

    CAS 

    Google Scholar
     

  • 158.

    Johansen, M. D. et al. Animal and translational models of SARS-CoV-2 infection and COVID-19. Mucosal Immunol. 13, 877–891 (2020).

    CAS 

    Google Scholar
     

  • 159.

    Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020).


    Google Scholar
     

  • 160.

    Fan, C. et al. Prediction of epidemic spread of the 2019 novel coronavirus driven by spring festival transportation in China: a population-based study. Int. J. Environ. Res. Public Health 17, 1679 (2020).

    CAS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    Natural Gas: The Other Reason Why Texas Had Power Shortage, Not Just Snowstorm
    Unauthorized International Trading of Wild Life Causes Decrease In Species Abundance
    Northrop Grumman launches Cygnus cargo spacecraft to space station
    Facebook will ban Australian users from sharing or viewing news
    Coronapod: our future with an ever-present coronavirus

    Leave a Reply

    Your email address will not be published. Required fields are marked *