Optical Fourier surfaces

Nature
  • 1.

    Hopkinson, F. & Rittenhouse, D. An optical problem, proposed by Mr. Hopkinson, and solved by Mr. Rittenhouse. Trans. Am. Phil. Soc. 2, 201–206 (1786).


    Google Scholar
     

  • 2.

    Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman, 2017).

  • 6.

    Mamin, H. J. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Pires, D. et al. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 328, 732–735 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Rawlings, C. D. et al. Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication. Sci. Rep. 7, 16502 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Nagpal, P., Lindquist, N. C., Oh, S. H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Blanchard, R. et al. Gratings with an aperiodic basis: single-mode emission in multi-wavelength lasers. New J. Phys. 13, 113023 (2011).


    Google Scholar
     

  • 11.

    Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 12.

    Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Matsui, T., Agrawal, A., Nahata, A. & Vardeny, Z. V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 446, 517–521 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Martins, E. R. et al. Deterministic quasi-random nanostructures for photon control. Nat. Commun. 4, 2665 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Ozaki, M., Kato, J.-i. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 18.

    Mahler, L. et al. Quasi-periodic distributed feedback laser. Nat. Photon. 4, 165–169 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Ayata, M. et al. High-speed plasmonic modulator in a single metal layer. Science 358, 630–632 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Pendry, J. B., Huidobro, P. A., Luo, Y. & Galiffi, E. Compacted dimensions and singular plasmonic surfaces. Science 358, 915–917 (2017).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 23.

    Hu, G. et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat. Photon. 13, 467–472 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139–152 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Kim, J., Joy, D. C. & Lee, S. Y. Controlling resist thickness and etch depth for fabrication of 3D structures in electron-beam grayscale lithography. Microelectron. Eng. 84, 2859–2864 (2007).

    CAS 

    Google Scholar
     

  • 26.

    Dakss, M. L., Kuhn, L., Heidrich, P. F. & Scott, B. A. Grating coupler for efficient excitation of optical guided waves in thin films. Appl. Phys. Lett. 16, 523–525 (1970).

    ADS 

    Google Scholar
     

  • 27.

    Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Shi, L. et al. Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. Phys. Rev. Lett. 112, 153002 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Kurvits, J. A., Jiang, M. & Zia, R. Comparative analysis of imaging configurations and objectives for Fourier microscopy. J. Opt. Soc. Am. A 32, 2082–2092 (2015).

    ADS 

    Google Scholar
     

  • 30.

    Barnes, W. L., Preist, T. W., Kitson, S. C. & Sambles, J. R. Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. Phys. Rev. B 54, 6227–6244 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 2008).

  • 32.

    Chao, W., Harteneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435, 1210–1213 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Wang, Y., Yun, W. & Jacobsen, C. Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging. Nature 424, 50–53 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Di Fabrizio, E. et al. High-efficiency multilevel zone plates for keV X-rays. Nature 401, 895–898 (1999).

    ADS 

    Google Scholar
     

  • 35.

    Vitiello, M. S. et al. Photonic quasi-crystal terahertz lasers. Nat. Commun. 5, 5884 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Huang, Z. Q., Marks, D. L. & Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography. Optica 6, 119–124 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Yoo, D., Johnson, T. W., Cherukulappurath, S., Norris, D. J. & Oh, S. H. Template-stripped tunable plasmonic devices on stretchable and rollable substrates. ACS Nano 9, 10647–10654 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    CAS 

    Google Scholar
     

  • 39.

    Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Rubin, N. A., D’Aversa, G., Chevalier, P., Shi, Z., Chen, W. T. & Capasso, F. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Moreno, V., Román, J. F. & Salgueiro, J. R. High efficiency diffractive lenses: deduction of kinoform profile. Am. J. Phys. 65, 556–562 (1997).

    ADS 

    Google Scholar
     

  • 43.

    McPeak, K. M. et al. Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Kapsalidis, F. et al. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Appl. Phys. B 124, 107 (2018).

    ADS 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    Docker partners with AWS to improve container workflows
    Bleak financial outlook for PhD students in Australia
    Japan Flooding: Heavy Rains Move to Central Region, Leaving More Damage in South
    Nearby Red Dwarf Star ‘AD Leonis’ With Massive Solar Flares Spotted
    We Persevere

    Leave a Reply

    Your email address will not be published. Required fields are marked *