Programmable photonic circuits

Nature
  • 1.

    Chen, X. et al. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE 106, 2101–2116 (2018).

    CAS 

    Google Scholar
     

  • 2.

    Smit, M., Williams, K. & van der Tol, J. Past, present, and future of InP-based photonic integration. APL Photonics 4, 050901 (2019).

    ADS 

    Google Scholar
     

  • 3.

    Capmany, J. & Perez, D. Programmable Integrated Photonics (Oxford Univ. Press, 2020). The first book on the subject of programmable photonics gives a detailed overview of the fundamental principles, architectures and potential applications.

  • 4.

    Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Zhuang, L., Roeloffzen, C. G. H., Hoekman, M., Boller, K. & Lowery, A. J. Programmable photonic signal processor chip for radiofrequency applications. Optica 2, 854–859 (2015).

    ADS 

    Google Scholar
     

  • 6.

    Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Harris, N. C. et al. Linear programmable nanophotonic processors. Optica 5, 1623–1631 (2018). One of the largest-scale demonstrations of a programmable photonic circuit, using a silicon photonics forward-only mesh that maps 26 input modes onto 26 output modes, for use in deep learning and quantum information processing.

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Miller, D. A. B. Self-configuring universal linear optical component. Photon. Res. 1, 1–15 (2013). This foundational paper in the field of programmable photonics is the first to bring together waveguide meshes with self-configuration algorithms that require no active computation, including the concept of the self-aligning beam coupler.

    ADS 

    Google Scholar
     

  • 9.

    Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 10.

    Harris, N. C. et al. Large-scale quantum photonic circuits in silicon. Nanophotonics 5, 456–468 (2016).

    CAS 

    Google Scholar
     

  • 11.

    Notaros, J. et al. Programmable dispersion on a photonic integrated circuit for classical and quantum applications. Opt. Express 25, 21275–21285 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. An optimal design for universal multiport interferometers. Optica 12, 1460–1465 (2016).

    ADS 

    Google Scholar
     

  • 13.

    Perez-Lopez, D. Programmable integrated silicon photonics waveguide meshes: optimized designs and control algorithms. IEEE J. Sel. Top. Quantum Electron. 26, 8301312 (2020).


    Google Scholar
     

  • 14.

    Ribeiro, A., Ruocco, A., Vanacker, L. & Bogaerts, W. Demonstration of a 4×4-port universal linear circuit. Optica 3, 1348–1357 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor. Nat. Photon. 11, 447–452 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Mennea, P. L. et al. Modular linear optical circuits. Optica 5, 1087–1090 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Taballione, C. et al. 8×8 programmable quantum photonic processor based on silicon nitride waveguides. In Frontiers in Optics, JTu3A.58 (Optical Society of America, 2018). A demonstration of an 8 × 8 forward-only programmable linear circuit in silicon nitride that benefits from the notably low optical losses of this material and is therefore attractive for linear quantum operations on single photons.

  • 18.

    Perez, D. et al. Silicon photonics rectangular universal interferometer. Laser Photonics Rev. 11, 1700219 (2017).

    ADS 

    Google Scholar
     

  • 19.

    Xie, Y. et al. Programmable optical processor chips: toward photonic RF filters with DSP-level flexibility and MHz-band selectivity. Nanophotonics 7, 421–454 (2017). A comprehensive overview of the various ways in which a programmable photonic circuit can be used to process microwave signals, and on how this type of circuit is transitioning from custom ASPICs to generic programmable PICs.


    Google Scholar
     

  • 20.

    Hall, T. J. & Hasan, M. Universal discrete Fourier optics RF photonic integrated circuit architecture. Opt. Express 24, 7600–7610 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Dyakonov, I. V. et al. Reconfigurable photonics on a glass chip. Phys. Rev. Appl. 10, 044048 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Shokraneh, F., Geoffroy-Gagnon, S., Nezami, M. S. & Liboiron-Ladouceur, O. A single layer neural network implemented by a 4×4 MZI-based optical processor. IEEE Photonics J. 11, 4501612 (2019).


    Google Scholar
     

  • 23.

    Lu, L., Zhou, L. & Chen, J. Programmable SCOW mesh silicon photonic processor for linear unitary operator. Micromachines 10, 646 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 26.

    Schaeff, C., Polster, R., Huber, M., Ramelow, S. & Zeilinger, A. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica 2, 523–529 (2015).

    ADS 

    Google Scholar
     

  • 27.

    Shadbolt, P. J. et al. Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nat. Photon. 6, 45–49 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Miller, D. A. B. Waves, modes, communications, and optics: a tutorial. Adv. Opt. Photonics 11, 679 (2019).

    ADS 

    Google Scholar
     

  • 29.

    Miller, D. A. B. Self-aligning universal beam coupler. Opt. Express 21, 6360–6370 (2013).

    ADS 

    Google Scholar
     

  • 30.

    Miller, D. A. B. Perfect optics with imperfect components. Optica 2, 747–750 (2015).

    ADS 

    Google Scholar
     

  • 31.

    Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light Sci. Appl. 6, e17110 (2017). Early demonstration of a forward-only programmable mesh used to unmix different modes in a waveguide, implementing integrated transparent detectors that measure the light intensity in the waveguide without inducing additional optical loss.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Pai, S. et al. Parallel programming of an arbitrary feedforward photonic network. IEEE J. Sel. Top. Quantum Electron. 25, 6100813 (2020).


    Google Scholar
     

  • 33.

    Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Wang, M., Alves, A. R., Xing, Y. & Bogaerts, W. Tolerant, broadband tunable 2×2 coupler circuit. Opt. Express 28, 5555–5566 (2020).

    ADS 

    Google Scholar
     

  • 35.

    Pérez-López, D., Gutierrez, A. M., Sánchez, E., DasMahapatra, P. & Capmany, J. Integrated photonic tunable basic units using dual-drive directional couplers. Opt. Express 27, 38071 (2019).

    ADS 

    Google Scholar
     

  • 36.

    Choutagunta, K., Roberts, I., Miller, D. A. B. & Kahn, J. M. Adapting Mach–Zehnder mesh equalizers in direct-detection mode-division-multiplexed links. J. Light. Technol. 38, 723–735 (2020).

    ADS 

    Google Scholar
     

  • 37.

    Miller, D. A. B. Analyzing and generating multimode optical fields using self-configuring networks. Optica 7, 794–801 (2020).

    ADS 

    Google Scholar
     

  • 38.

    Morizur, J.-F. et al. Programmable unitary spatial mode manipulation. J. Opt. Soc. Am. A 27, 2524 (2010).

    ADS 

    Google Scholar
     

  • 39.

    Labroille, G. et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express 22, 15599–15607 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Tanomura, R., Tang, R., Ghosh, S., Tanemura, T. & Nakano, T. Robust integrated optical unitary converter using multiport directional couplers. J. Light. Technol. 38, 60–66 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Miller, D. A. B. Setting up meshes of interferometers – reversed local light interference method. Opt. Express 25, 29233 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Li, H. W. et al. Calibration and high fidelity measurement of a quantum photonic chip. New J. Phys. 15, 063017 (2013).

    ADS 

    Google Scholar
     

  • 43.

    Cong, G. et al. Arbitrary reconfiguration of universal silicon photonic circuits by bacteria foraging algorithm to achieve reconfigurable photonic digital-to-analog conversion. Opt. Express 27, 24914 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Pérez, D. et al. Multipurpose silicon photonics signal processor core. Nat. Commun. 8, 1–9 (2017). The first experimental demonstration of a recirculating waveguide mesh with seven unit cells that can be programmed to perform more than a hundred different functions.

    ADS 

    Google Scholar
     

  • 45.

    Pérez, D., Gasulla, I. & Capmany, J. Field-programmable photonic arrays. Opt. Express 26, 27265 (2018).

    ADS 

    Google Scholar
     

  • 46.

    Rahim, A., Spuesens, T., Baets, R. & Bogaerts, W. Open-access silicon photonics: current status and emerging initiatives. Proc. IEEE 106, 2313–2330 (2018).


    Google Scholar
     

  • 47.

    Munoz, P. et al. Foundry developments toward silicon nitride photonics from visible to the mid-infrared. IEEE J. Sel. Top. Quantum Electron. 25, 8200513 (2019).


    Google Scholar
     

  • 48.

    Teng, M. et al. Miniaturized silicon photonics devices for integrated optical signal processors. J. Light. Technol. 38, 6–17 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Sacher, W. D. et al. Monolithically integrated multilayer silicon nitride-on-silicon waveguide platforms for 3-D photonic circuits and devices. Proc. IEEE 106, 2232–2245 (2018).

    CAS 

    Google Scholar
     

  • 50.

    Baudot, C. et al. Developments in 300mm silicon photonics using traditional CMOS fabrication methods and materials. In 2017 IEEE Int. Electron Devices Meeting, 765–768 (IEEE, 2017).

  • 51.

    Fahrenkopf, N. M. et al. The AIM photonics MPW: a highly accessible cutting edge technology for rapid prototyping of photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 25, 8201406 (2019).


    Google Scholar
     

  • 52.

    Chiles, J. et al. Multi-planar amorphous silicon photonics with compact interplanar couplers, cross talk mitigation, and low crossing loss. APL Photonics 2, 116101 (2017).

    ADS 

    Google Scholar
     

  • 53.

    Van Campenhout, J., Green, W. M. J., Assefa, S. & Vlasov, Y. A. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt. Lett. 35, 1013–1015 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Masood, A. et al. Comparison of heater architectures for thermal control of silicon photonic circuits. In Proc. 10th Int. Conference on Group IV Photonics 83–84 (IEEE, 2013).

  • 55.

    Milanizadeh, M., Aguiar, D., Melloni, A. & Morichetti, F. Canceling thermal cross-talk effects in photonic integrated circuits. J. Light. Technol. 37, 1325–1332 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Soref, R. A. & Bennett, B. R. Electrooptical effects in silicon. IEEE J. Quantum Electron. 23, 123–129 (1987).

    ADS 

    Google Scholar
     

  • 57.

    Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nat. Photon. 4, 518–526 (2010); corrigendum 4, 660 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Memon, F. A. et al. Silicon oxycarbide platform for integrated photonics. J. Light. Technol. 38, 784–791 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Jin, W., Polcawich, R. G., Morton, P. A. & Bowers, J. E. Piezoelectrically tuned silicon nitride ring resonator. Opt. Express 26, 3174–3187 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Hosseini, N. et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt. Express 23, 14018 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    De Cort, W., Beeckman, J., Claes, T., Neyts, K. & Baets, R. Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding. Opt. Lett. 36, 3876–3878 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Xing, Y. et al. Digitally controlled phase shifter using an SOI slot waveguide with liquid crystal infiltration. IEEE Photonics Technol. Lett. 27, 1269–1272 (2015).

    ADS 

    Google Scholar
     

  • 63.

    Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Desiatov, B., Shams-Ansari, A., Zhang, M., Wang, C. & Lončar, M. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica 6, 380 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Alexander, K. et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 9, 3444 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Leuthold, J. et al. Silicon-organic hybrid electro-optical devices. IEEE J. Sel. Top. Quantum Electron. 19, 114–126 (2013).

    ADS 

    Google Scholar
     

  • 67.

    Errando-Herranz, C. et al. MEMS for photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 8200916 (2020).

    CAS 

    Google Scholar
     

  • 68.

    Quack, N. et al. MEMS-enabled silicon photonic integrated devices and circuits. IEEE J. Quantum Electron. 56, 8400210 (2020).


    Google Scholar
     

  • 69.

    Hoessbacher, C. et al. The plasmonic memristor: a latching optical switch. Optica 1, 198 (2014).

    ADS 

    Google Scholar
     

  • 70.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS 

    Google Scholar
     

  • 71.

    Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–476 (2017).

    CAS 

    Google Scholar
     

  • 72.

    Morichetti, F. et al. Non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J. Sel. Top. Quantum Electron. 20, 292–301 (2014).

    ADS 

    Google Scholar
     

  • 73.

    Jayatilleka, H., Shoman, H., Chrostowski, L. & Shekhar, S. Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica 6, 84–91 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Grillanda, S. et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica 1, 129 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 75.

    Annoni, A. et al. Automated routing and control of silicon photonic switch fabrics. IEEE J. Sel. Top. Quantum Electron. 22, 169–176 (2016).

    ADS 

    Google Scholar
     

  • 76.

    Dumais, P. et al. Silicon photonic switch subsystem with 900 monolithically integrated calibration photodiodes and 64-fiber package. J. Light. Technol. 36, 233–238 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 77.

    Chen, H., Luo, X. & Poon, A. W. Cavity-enhanced photocurrent generation by 1.55 μm wavelengths linear absorption in a p–i–n diode embedded silicon microring resonator. Appl. Phys. Lett. 95, 171111 (2009).

    ADS 

    Google Scholar
     

  • 78.

    Ribeiro, A. & Bogaerts, W. Digitally controlled multiplexed silicon photonics phase shifter using heaters with integrated diodes. Opt. Express 25, 29778 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Zimmermann, L. et al. BiCMOS silicon photonics platform. In Optical Fiber Communication Conference Th4E-5 (Optical Society of America, 2015).

  • 80.

    Orcutt, J. S. et al. Nanophotonic integration in state-of-the-art CMOS foundries. Opt. Express 19, 2335–2346 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 81.

    Stojanović, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes. Opt. Express 26, 13106 (2018).

    ADS 

    Google Scholar
     

  • 82.

    Carroll, L. et al. Photonic packaging: transforming silicon photonic integrated circuits into photonic devices. Appl. Sci. 6, 426 (2016).


    Google Scholar
     

  • 83.

    Patterson, D., De Sousa, I. & Archard, L.-M. The future of packaging with silicon photonics. Chip Scale Rev. 21, 1–10 (2017).


    Google Scholar
     

  • 84.

    Ribeiro, A., Declercq, S., Khan, U., Wang, M. & Van Iseghem, L. Column-row addressing of thermo-optic phase shifters for controlling large silicon photonic circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100708 (2020).

    CAS 

    Google Scholar
     

  • 85.

    Pantouvaki, M. et al. Active components for 50 Gb/s NRZ-OOK optical interconnects in a silicon photonics platform. J. Light. Technol. 35, 631–638 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 86.

    Chen, H. et al. 100-Gbps RZ data reception in 67-GHz Si-contacted germanium waveguide p-i-n photodetectors. J. Light. Technol. 35, 722–726 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Pérez, D., Gasulla, I. & Capmany, J. Toward programmable microwave photonics processors. J. Light. Technol. 36, 519–532 (2018).

    ADS 

    Google Scholar
     

  • 88.

    Zoldak, M., Halmo, L., Turkiewicz, J. P., Schumann, S. & Henker, R. Packaging of ultra-high speed optical fiber data interconnects. In Opt. Fibers and Their Applications 2017 10325, 103250R (International Society for Optics and Photonics, 2017).

  • 89.

    Willner, A. E., Khaleghi, S., Chitgarha, M. R. & Yilmaz, O. F. All-optical signal processing. J. Light. Technol. 32, 660–680 (2014).

    ADS 

    Google Scholar
     

  • 90.

    Ramirez, J. M. et al. III–V-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 26, 6100213 (2020).


    Google Scholar
     

  • 91.

    Liu, A. Y. & Bowers, J. Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 6000412 (2018).


    Google Scholar
     

  • 92.

    Zhang, J. et al. Transfer-printing-based integration of a III–V-on-silicon distributed feedback laser. Opt. Express 26, 8821–8830 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 93.

    Thiessen, T. et al. Back-side-on-BOX heterogeneously integrated III–V-on-silicon O-band distributed feedback lasers. J. Light. Technol. 38, 3000–3006 (2020).

    ADS 

    Google Scholar
     

  • 94.

    López, A., Perez, D., DasMahapatra, P. & Capmany, J. Auto-routing algorithm for field-programmable photonic gate arrays. Opt. Express 28, 737–752 (2020).

    ADS 

    Google Scholar
     

  • 95.

    Chen, X., Stroobant, P., Pickavet, M. & Bogaerts, W. Graph representations for programmable photonic circuits. J. Light. Technol. https://ieeexplore.ieee.org/document/9056549 (2020).

  • 96.

    Zand, I. & Bogaerts, W. Effects of coupling and phase imperfections in programmable photonic hexagonal waveguide meshes. Photon. Res. 8, 211–218 (2020).


    Google Scholar
     

  • 97.

    Bogaerts, W. & Rahim, A. Programmable photonics: an opportunity for an accessible large-volume PIC ecosystem. IEEE J. Sel. Top. Quantum Electron. 26, 1–17 (2020). A simple techno-economic analysis of how general-purpose programmable photonic circuits can reduce the cost of prototyping photonics applications.


    Google Scholar
     

  • 98.

    Dubrovsky, M., Ball, M. & Penkovsky, B. Optical proof of work. Preprint at https://arxiv.org/abs/1911.05193 (2019).

  • 99.

    Paquot, Y., Schroeder, J., Pelusi, M. D. & Eggleton, B. J. All-optical hash code generation and verification for low latency communications. Opt. Express 21, 23873 (2013).

    ADS 

    Google Scholar
     

  • 100.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    ADS 

    Google Scholar
     

  • 101.

    Norberg, E. J., Guzzon, R. S., Parker, J. S., Johansson, L. A. & Coldren, L. A. Programmable photonic microwave filters monolithically integrated in InP-InGaAsP. J. Light. Technol. 29, 1611–1619 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 102.

    Wang, J. et al. Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip. Nat. Commun. 6, 5957 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Burla, M. et al. On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing. Opt. Express 19, 21475 (2011).

    ADS 

    Google Scholar
     

  • 104.

    Liu, L. et al. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun. 335, 266–270 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 105.

    Perez-Lopez, D., Sanchez, E. & Capmany, J. Programmable true-time delay lines using integrated waveguide meshes. J. Light. Technol. 36, 4591–4601 2018.

    ADS 
    CAS 

    Google Scholar
     

  • 106.

    Novak, D. et al. Radio-over-fiber technologies for emerging wireless systems. IEEE J. Quantum Electron. 52, 0600311 (2016).


    Google Scholar
     

  • 107.

    Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).


    Google Scholar
     

  • 108.

    Heck, M. J. R. Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 6, 93–107 (2017).

    CAS 

    Google Scholar
     

  • 109.

    Van Acoleyen, K. Efficient light collection and direction-of-arrival estimation using a photonic integrated circuit. Photonics 24, 933–935 (2012).


    Google Scholar
     

  • 110.

    Miller, D. A. B. Establishing optimal wave communication channels automatically. J. Light. Technol. 31, 3987–3994 (2013).

    ADS 

    Google Scholar
     

  • 111.

    Luan, E., Shoman, H., Ratner, D. M., Cheung, K. C. & Chrostowski, L. Silicon photonic biosensors using label-free detection. Sensors 18, 3519 (2018).


    Google Scholar
     

  • 112.

    Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip. Photon. Res. 3, B47–B59 (2015).

    CAS 

    Google Scholar
     

  • 113.

    Li, Y. et al. Six-beam homodyne laser Doppler vibrometry based on silicon photonics technology. Opt. Express 26, 3638 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Trimberger, S. M. Three ages of FPGAs: a retrospective on the first thirty years of FPGA technology. Proc. IEEE 103, 318–331 (2015).


    Google Scholar
     

  • 115.

    Mohomed, I. & Dutta, P. The age of DIY and dawn of the maker movement. Mob. Comput. Commun. Rev. 18, 41–43 (2015).


    Google Scholar
     

  • 116.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 7, 79 (2018).


    Google Scholar
     

  • 117.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 119.

    Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural networks. npj Quantum Inf. 5, 60 (2019).

    ADS 

    Google Scholar
     

  • 120.

    Miatto, F. M., Epping, M. & Lütkenhaus, N. Hamiltonians for one-way quantum repeaters. Quantum 2, 75 (2018).


    Google Scholar
     

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    Falcon 9 investigation ongoing as SpaceX continues Starlink launches
    SpaceX teams with Microsoft for Space Development Agency contract
    Apple iPhone maker Foxconn wants to become the Android for electric cars with new vehicle platform
    Daily briefing: How the uncrushable beetle got so strong
    New Crew Safely Aboard the Space Station on This Week @NASA – October 16, 2020

    Leave a Reply

    Your email address will not be published. Required fields are marked *