Spin-cooling of the motion of a trapped diamond

Nature
  • 1.

    Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. In Cavity Optomechanics: Nano- and Micromechanical Resonators Interacting with Light (eds Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F.) 327–351 (Springer, 2014).

  • 2.

    Rabl, P. et al. Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79, 041302 (2009).

  • 3.

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

  • 4.

    LaHaye, M. D., Suh, J., Echternach, P. M., Schwab, K. C. & Roukes, M. L. Nanomechanical measurements of a superconducting qubit. Nature 459, 960–964 (2009).

  • 5.

    Kolkowitz, S. et al. Coherent sensing of a mechanical resonator with a single-spin qubit. Science 335, 1603–1606 (2012).

  • 6.

    Arcizet, O. et al. A single nitrogen-vacancy defect coupled to a nanomechanical oscillator. Nat. Phys. 7, 879–883 (2011).

  • 7.

    Lee, D., Lee, K. W., Cady, J. V., Ovartchaiyapong, P. & Jayich, A. C. B. Topical review: spins and mechanics in diamond. J. Opt. 19, 033001 (2017).

  • 8.

    O’Connell, A. D. et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010).

  • 9.

    Treutlein, P., Hunger, D., Camerer, S., Hänsch, T. W. & Reichel, J. Bose-Einstein condensate coupled to a nanomechanical resonator on an atom chip. Phys. Rev. Lett. 99, 140403 (2007).

  • 10.

    Mamin, H. J., Poggio, M., Degen, C. L. & Rugar, D. Nuclear magnetic resonance imaging with 90-nm resolution. Nat. Nanotechnol. 2, 301–306 (2007).

  • 11.

    Rugar, D., Budakian, R., Mamin, H. J. & Chui, B. W. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004).

  • 12.

    Kim, P. H., Hauer, B. D., Doolin, C., Souris, F. & Davis, J. P. Approaching the standard quantum limit of mechanical torque sensing. Nat. Commun. 7, 13165 (2016).

  • 13.

    Burgess, J. A. J. et al. Quantitative magneto-mechanical detection and control of the Barkhausen effect. Science 339, 1051–1054 (2013).

  • 14.

    Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).

  • 15.

    Leggett, A. J. et al. Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987).

  • 16.

    Yin, Z. Q., Zhao, N. & Li, T. C. Hybrid opto-mechanical systems with nitrogen-vacancy centers. Sci. China Phys. Mech. Astron. 58, 1–12 (2015).

  • 17.

    Conangla, P. G., Schell, A. W., Rica, R. A. & Quidant, R. Motion control and optical interrogation of a levitating single nitrogen vacancy in vacuum. Nano Lett. 18, 3956–3961 (2018).

  • 18.

    Rabl, P. et al. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6, 602–608 (2010).

  • 19.

    Yin, Z., Li, T., Zhang, X. & Duan, L. M. Large quantum superpositions of a levitated nanodiamond through spin-optomechanical coupling. Phys. Rev. A 88, 033614 (2013).

  • 20.

    Scala, M., Kim, M. S., Morley, G. W., Barker, P. F. & Bose, S. Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111, 180403 (2013).

  • 21.

    Einstein, A. & Johannes de Haas, W. Experimenteller Nachweis der Ampèreschen Molekularströme. Verh. Deutsch. Physik. Gesellschaft 17, 152–170 (1915).

  • 22.

    Alzetta, G., Arimondo, E. & Ascoli, C. Paramagnetic resonance experiments at low fields with angular-momentum detection. Nuovo Cim. B 52, 392–402 (1967).

  • 23.

    Arcizet, O., Cohadon, P. F., Briant, T., Pinard, M. & Heidmann, A. Radiation-pressure cooling and optomechanical instability of a micromirror. Nature 444, 71–74 (2006).

  • 24.

    Gigan, S. et al. Self-cooling of a micromirror by radiation pressure. Nature 444, 67–70 (2006).

  • 25.

    Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

  • 26.

    Barson, M. S. J. et al. Nanomechanical sensing using spins in diamond. Nano Lett. 17, 1496–1503 (2017).

  • 27.

    Chang, D. E. et al. Cavity opto-mechanics using an optically levitated nanosphere. Proc. Natl Acad. Sci. USA 107, 1005–1010 (2010).

  • 28.

    Romero-Isart, O., Juan, M. L., Quidant, R. & Cirac, J. I. Toward quantum superposition of living organisms. New J. Phys. 12, 033015 (2010).

  • 29.

    Huillery, P. et al. Spin-mechanics with levitating ferromagnetic particles. Preprint at http://arxiv.org/abs/1903.09699 (2019).

  • 30.

    Wu, M. et al. Nanocavity optomechanical torque magnetometry and radiofrequency susceptometry. Nat. Nanotechnol. 12, 127–131 (2017).

  • 31.

    Delord, T. et al. Ramsey interferences and spin echoes from electron spins inside a levitating macroscopic particle. Phys. Rev. Lett. 121, 053602 (2018).

  • 32.

    Delord, T., Nicolas, L., Bodini, M. & Hétet, G. Diamonds levitating in a Paul trap under vacuum: measurements of laser-induced heating via NV center thermometry. Appl. Phys. Lett. 111, 013101 (2017).

  • 33.

    Delord, T., Nicolas, L., Schwab, L. & Hétet, G. Electron spin resonance from NV centers in diamonds levitating in an ion trap. New J. Phys. 19, 033031 (2017).

  • 34.

    Tetienne, J.-P. et al. Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging. New J. Phys. 14, 103033 (2012).

  • 35.

    Hebestreit, E., René, R., Frimmer, M. & Novotny, L. Measuring the internal temperature of a levitated nanoparticle in high vacuum. Phys. Rev. A 97, 043803 (2018).

  • 36.

    Millen, J., Deesuwan, T., Barker, P. & Anders, J. Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 425 (2014).

  • Products You May Like

    Articles You May Like

    REAL TIME – Corona Virus Statistical Data (Worldwide)
    Limited work continues on JWST
    Electromagnetism: The Glue of the Universe
    Oil jumps 12%, posts best week in history as traders expect big production cuts
    How EcoAthletes plans to go to bat for the climate
    Constructing a Duct Tape Boat | MythBusters

    Leave a Reply

    Your email address will not be published. Required fields are marked *